The dimension of the Cartesian product of partial orders
نویسنده
چکیده
If P and Q are partial orders, then the dimension of the cartesian product P x Q does not exceed the sum of the dimensions of P and Q. There are several known sufficient conditions for this bound to be attained, on the other hand, the only known lower bound for the dimension of a cartesian product is the trivial inequality dim(P x Q) ~> max{dim P, dim O}. In partictdar, if P has dimension n, we know only that n ~~3, the crown S ° is an n-dimensional partial order for which dim(S°xS°)=2n-2. No example for which dim(Px Q) 3, la couronne S o est un ordre partiel de dimension n pour lequel dim(S°x S~)= 2n-2. On ne connait ancun exemple pour lequel dim(Px Q)<dimP+dim Q-2.
منابع مشابه
Secret Sharing Based On Cartesian product Of Graphs
The purpose of this paper is to study the information ratio of perfect secret sharing of product of some special families of graphs. We seek to prove that the information ratio of prism graphs $Y_{n}$ are equal to $frac{7}{4}$ for any $ngeq 5$, and we will gave a partial answer to a question of Csirmaz cite{CL}. We will also study the information ratio of two other families $C_{m}times C_{n}$ a...
متن کاملThe reliability Wiener number of cartesian product graphs
Reliability Wiener number is a modification of the original Wiener number in which probabilities are assigned to edges yielding a natural model in which there are some (or all) bonds in the molecule that are not static. Various probabilities naturally allow modelling different types of chemical bonds because chemical bonds are of different types and it is well-known that under certain condition...
متن کاملThe Merrifield-Simmons indices and Hosoya indices of some classes of cartesian graph product
The Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph and the Hosoya index of a graph is defined as the total number of the matchings of the graph. In this paper, we give formula for Merrifield-Simmons and Hosoya indices of some classes of cartesian product of two graphs K{_2}×H, where H is a path graph P{_n}, cyclic graph C{_n}, or star gra...
متن کاملComputing the First and Third Zagreb Polynomials of Cartesian Product of Graphs
Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as: ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , ) euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.
متن کاملThe Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 53 شماره
صفحات -
تاریخ انتشار 1985